Damascus Steel – Sword Makers of the Islamic Civilization

Posted: May 18, 2011 in fakta menarik, Fakta pelik, Islam, Islam dan Sains, Useful
Close up of Islamic Sabre #10, made by Assad Ullah in the 17th Century.

Close up of Islamic Sabre #10, made by Assad Ullah in the 17th Century.

Peter Paufler (c) 2006
Sabre #10, Berne Historical Museum, Switzerland, Assad Ullah in the 17th Century.

Damascus Steel: Sabre #10, Berne Historical Museum, Switzerland, made by Assad Ullah in the 17th Century.

Peter Paufler (c) 2006

Diceritakan, hebatnya pedang Salahuddin Al-Ayubi mampu membelah saputangan sutera yang melayang jatuh ke atasnya, mampu memotong pedang lawan dan mampu membelah batu tanpa ia menjadi tumpul.

Sejauh mana kita semua mengenali sudut hidup pahlawan Islam terunggul lewat peperangan salib, Salahuddin Al-Ayyubi? Beliau sangat terkenal sebagai sosok kukuh yang berjaya menghantar rasa gerun dan hormat kepada tentera-tentera musuh. Lebih manis lagi, peribadi inilah yang telah memimpin pembebasan Tanah Suci ketiga umat Islam daripada cengkaman Kristian hampir seratus tahun lamanya.

Prof Dr. Peter Paufler and kumpulannya di Teknikal Universiti Dresden, Jerman apabila mereka menemui TIUB KARBON NANO (carbon nanotube) di dalam pedang yang digunakan oleh Salahuddin Al-Ayubi dan tentera-tentera Islam dalam peperangan salib. Carbon nanotube inilah yang telah menjadikan pedang-pedang pejuang Islam sangat istimewa; SANGAT TAJAM tetapi MUDAH LENTUR. Penemuan ini telah diterbitkan oleh jurnal Nature (antara jurnal saintifik paling berpengaruh di dunia) pada tahun 2006

Tahun 1192. Richard yang Berhati Singa(Lion Heart), raja Inggris yang memimpin
tentara Kristen dalam Perang Salib III, bertemu dengan musuh bebuyutannya, pemimpin muslim Salahuddin al-Ayyubi. Kedua pemimpin ini saling menghormati. Kedua pemimpin yang kemudian menjadi legenda itu, demikian Sir Walter Scott mendramatisasi dalam novel The Talisman, memamerkan senjata masing-masing.

Pedang King Richard (lion Heart)

Richard mengeluarkan pedang lebar mengkilap buatan pandai besi terbaik Kepulauan
Inggris. Salahuddin menghunus pedang kesayangannya. Pedang lengkung buatan pandai besi di Damaskus yang tidak mengkilap. kemudian Richard memapas sebuah kotak dari besi hingga putus dan Shallahudin Al Ayubi kemudian melepaskan kain sutra halus hingga terbang dan jatuh di permukaan Pedang Lengkung Damaskus dan kemudian sutra tersebut putus karena sangat tajamnya pedang.(Kisah Logam, buku saku terbitan Pustaka Ladybird)

Sumber 

http://bukitbarisan.wordpress.com/
http://al-fikrah.net/index.php?name=Forums&file=viewtopic&t=15185
http://duha89.blogspot.com/2009/10/salahuddin-al-ayyubi.html

Sejauh mana kita semua mengenali sudut hidup pahlawan Islam terunggul lewat peperangan salib, Salahuddin Al-Ayyubi? Beliau sangat terkenal sebagai sosok kukuh yang berjaya menghantar rasa gerun dan hormat kepada tentera-tentera musuh. Lebih manis lagi, peribadi inilah yang telah memimpin pembebasan Tanah Suci ketiga umat Islam daripada cengkaman Kristian hampir seratus tahun lamanya.

Keistimewaan Salahuddin Al-Ayubi telah dibongkar oleh Prof Dr. Peter Paufler and kumpulannya di Teknikal Universiti Dresden, Jerman apabila mereka menemui TIUB KARBON NANO (carbon nanotube) di dalam pedang yang digunakan oleh Salahuddin Al-Ayubi dan tentera-tentera Islam dalam peperangan salib. Carbon nanotube inilah yang telah menjadikan pedang-pedang pejuang Islam sangat istimewa; SANGAT TAJAM tetapi MUDAH LENTUR. Penemuan ini telah diterbitkan oleh jurnal Nature (antara jurnal saintifik paling berpengaruh di dunia) pada tahun 2006:

www.nature.com/nature/…4286a.html

(nota: perlu langganan pembaca) atau sila rujuk ulasan yang berkaitan oleh Royal Society of Chemistry, UK di:

www.rsc.org/chemistryw…110602.asp

Kunci kepada teknologi nano pedang mujahidin Islam ini terletak kepada teknik pembuatannya yang unik. Bijih besi dari India yang dikenali sebagai wootz mengandungi sejumlah peratusan unsur karbon (carbon) yang memberikannya sifat rapuh (brittle). Apabila dikenakan suhu yang amat tinggi, sekitar 800°C, campuran besi dan karbon tadi akan ditambah dengan unsur-unsur seperti Kromium, Mangan, Kobalt dan beberapa unsur lain yang telah memberikannya sifat-sifat sebilah pedang setiawan: TAJAM lagi LENTUR. Sayang sekali, teknologi ini telah lenyap menginjak kurun ke-18 seiring dengan kepupusan bijih besi dan unsur-unsur penguat pedang tadi.

Penempa-penempa pedang ini, biaroun secara tidak sedar, telah meletakkan dua asas penting kepada permulaan sains bahan moden: 1) Campuran bahan-bahan kimia pada peratusan yang sesuai dan 2) Teknik penggunaan haba yang tinggi untuk pembikinan produk.

Tentera-tentera salib terkedu saat-saat “perkenalan” mereka dengan pedang nano pejuang Islam! Pedang nano Salahuddin Al-Ayyubi yang berwarna kebiru-biruan dengan larik-larik mengufuk di sepanjang bilahnya telah “mengajar” pedang lebar Inggeris kepunyaan Raja Richard I (kepala tentera salib) akan erti kehebatan teknologi Islam pada zaman itu seperti yang dihikayatkan oleh Sir Walter Scott di dalam bukunya “The Talisman”. Perumpamaan yang dilontarkan ialah pedang Salahuddin ini mampu membelah dua kain sutera di udara begitu sahaja manakala jika ia ditetakkan kepada batu pejal, magnitud ketajamannya sama sekali tidak terjejas!

Masih tercari-cari model untuk berjaya dalam hidup? Teladanilah kualiti Salahuddin Al-Ayyubi. Pahlawan agama ini malah seorang ilmuwan dan ahli ibadat; sangat menjaga solat berjemaah, gemar mendengar hadis Rasulullah SAW, hidup zuhud, pemurah dan ceria tetapi gagah berani di medan perang. Riwayat-riwayat mengenai Salahuddin Al-Ayyubi boleh dikutip, di antaranya menerusi buku Al-Bidayah wa Al-Nihayah karangan Imam Ibnu Kathir dan Siyar A’lam Al-Nubala’ karya Imam Al-Zahabi. Sungguh! Pedang nano hanyalah sebilah besi biasa dan tidak bermakna melainkan ia berada di tangan hamba Allah yang berkualiti seperti Salahuddin Al-Ayyubi!

Ahmad Faiz bin Abdul Latip
Kajang

Sila lihat peribadi Salahuddin dengan lebih dekat di:

ms.wikipedia.org/wiki/…_al-Ayyubi

In Sir Walter Scott’s book The Talisman, he recreated the scene of October 1192, when Richard Lionheart of England and Saladin the Saracen met to end the Third Crusade (there would be five more after Richard retired to England, depending on how youcount your crusades). Scott imagined an arms demonstration between the two men, Richard wielding a good English broadsword and Saladin, a scimitar of Damascus steel, “a curved and narrow blade, which glittered not like the swords of the Franks, but was, on the contrary, of a dull blue colour, marked with ten millions of meandering lines…” This fearsome weapon, at least in Scott’s overblown prose, represented the winner in this medieval arms race… or at least a fair match.

Damascus Steel: Understanding the Alchemy

The legendary sword known as the Damascus steel intimidated the European invaders into the ‘Holy Lands’ of the Islamic civilization throughout the Crusades (AD 1095-1270). Blacksmiths in Europe attempted to match the steel, using thepattern welding technique of alternating layers of steel and iron, folding and twisting the metal during the forging process. (Pattern welding was a technique used by swordmakers from around the world, including Celts of the 6th century BC,Vikings of the 11th century AD and the 13th century Japanese.) In some cases, the European blacksmiths etched the blade or overlaid the surface of the blade with silver or copper filigree to imitate the characteristic watery lines of the Damascus steel blade. Some scholars credit this search for the Damascus steel process as the origins of modern materials science. But the European blacksmiths never duplicated the solid core Damascus steel, and the secret of its construction was lost even to the Islamic blacksmiths in the mid-18th century.

Wootz Steel and Saracen Blades

What is known today about “true” or “oriental” Damascus steel is that it was made from a raw material called wootz steel. Wootz was an exceptional grade of iron ore steel first made in southern and south central India and Sri Lanka perhaps as early as 300 BC. Wootz was extracted from raw iron ore and formed using a crucible to melt, burn away impurities and add important ingredients, including a high carbon content (nearly 1.5% by weight—wrought iron typically has carbon content around .1%). 

The high carbon content is the key–and the achilles heel–in the manufacturing process. High carbon content makes the keen edge and its durability possible; but its presence in the mixture is almost impossible to control. Too little carbon and the resulting stuff is wrought iron, too soft for these purposes; too much and you get cast iron, too brittle. If the process doesn’t go right, the steel forms plates of cementite, a phase of iron which is hopelessly fragile. Somehow, Islamic metallurgists were able to control for the inherent fragility and forge the raw material into fighting weapons, an ability that somehow was lost in the mid-18th century. 

But the problem is: it doesn’t really make any sense that blacksmiths would lose such a useful technology. Since the knowledge of the forgers has been lost many researchers have sought it, and in fact this report is based on their findings over the past decade or more. But in a recent article in Nature, a research team led by Peter Paufler at the University of Dresden report that they may have an idea of the mechanics of how the high carbon steel was created and why it disappeared. That idea lies in that most modern of materials sciences: nanotechnology.

The word ‘nanotechnology’ might seem a little odd to be applied to a technology that is clearly several centuries old. After all, a ‘nanometer’ is something that means one billionth part of meter, something no one could have measured until very recently. But in this sense, nanotechnology refers to the purposeful (and accidental) inclusion of very very tiny amounts of materials to create chemical reactions at the quantum level. Nanotechnology played a role in the mixing of Maya blue, that amazing color in Maya murals from 8th century America. Stained glass windowsfrom the European Renaissance, colored glasses in Bronze Age Egypt, and violins from the 18th century master Stradivari all benefited from the creative use of tiny amounts of inclusions of foreign matter placed into created objects, creating quantum level qualitative changes in the product. Nanotechnology then is alchemy in its most pure form. 

And so, nanotechnology–the inclusion of tiny amounts of foreign matter into a smelted iron product–had a crucial role in the construction of the Damascan blade. But… what were those elements and how did they get in there? The secret alchemy of making a Damascan blade was lost by the middle of the 18th century. European blacksmiths before then, and all those who came before the end of the last century who attempted to make their own blades failed to overcome the problems inherent in a high-carbon content, and could not explain how ancient Syrian blacksmiths achieved the filigreed surface and quality of the finished product.

Damascan Steel and Electron Microscopy

What the research team led by Paufler has done has been to use current nanotechnology to examine the microstructure of a Damascan blade using a scanning electron microscope. Investigations have determined that there are two pieces involved to this puzzle: both inclusions into the raw ore itself and the forging process completed in the mideast. Known purposeful additions to Wootz steel include the bark of Cassia auriculata (used in tanning) and the leaves of Calotropis gigantea (a milkweed). Spectroscopy has also identified tiny amounts of vanadium, chromium, manganese, cobalt, and nickel, and some rare elements, traces of which presumably came from the mines in India. 

These materials were already in the raw steel, but what Paufler and associates also identified in the steel were quantum level changes made in the metal which must have occurred during manufacture. They postulate that during the smith’s cyclic heating and forging processes, the metal developed a microstructure called ‘carbide nanotubes’, extremely hard tubes of carbon that are expressed on the surface and create the blade’s hardness. Thus, by blending the unique characteristics of Wootz steel with a forging process that included tiny amounts of specialized materials, the blacksmiths of the Islamic Civilization were able to create the Damascan steel. What happened in the mid-18th century was that the chemical makeup of the raw material altered–the minute quantities of one or more of the minerals disappeared, perhaps because the particular lode was exhausted. Such a difference would not have been apparent to the blacksmith visually; but, interestingly, the blacksmiths may have extended the life of the process by including small pieces of the previous batch in each new batch. 

We modern archaeologists like to say that the elite stuff, the expensive goods that were restricted to the upper classes, really have no interest to us. But cracking the code of how metallurgists made the elite Damascus steel! I vote for that.

Sources

Helmut Föll. n.d. Damascene Technique in Metalworking. This is a fascinating website in English and German by materials scientist Föll of the University of Kiel, with lots of details about the process and history of Damascus steel.

Lee A. Jones. 1998. Blade Patterns Intrinsic to Steel Edged Weapons. On Helmut Föll’s website.

M. Reibold et al. 2006. Carbon nanotubes in an ancient Damascus sabreNature 444:286.

Sharada Srinivasan and Srinivasa Ranganathan. 2004. India’s Legendary Wootz Steel: An advanced material of the ancient world. National Institute of Advanced Studies and the Indian Institute of Science in Bangalore.

S. Srinivasan and S. Ranganathan. ca. 1997. Wootz Steel: An Advanced Material of the Ancient World.

John D. Verhoeven. 2001. The Mystery of Damascus Blades. Scientific American

J.D. Verhoeven, A.H. Pendray, and W.E. Dauksch. 1998. The Key Role of Impurities in Ancient Damascus Steel BladesJOM 50(9):58-64.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s